Quiz 8; Tuesday, 3/19/2019
Section \#206; Time: 9:30 AM
GSI name: Roy Zhao
Name:

Circle True or False or leave blank. (1 point for correct answer, -1 for incorrect answer, 0 if left blank)

1. True FALSE $\bar{X}=\mu$ because both are equal to the average value.

Solution: \bar{X} is a random variable that represents an average of a sample (a section's average) where as $\bar{\mu}$ represents the population's average.
2. True FALSE The CLT tells us that \bar{X} is normally distributed.

Solution: The CLT tells us that \bar{X} is approximately normally distributed.

Show your work and justify your answers. Please circle or box your final answer.
3. (10 points) Suppose that each student has a 10% chance of going to office hours and this probability is independent of whether other students go.
(a) (2 points) Choose a random student. Let X be the random variable that outputs 1 if they goes to office hours and 0 otherwise. What is $E[X]$ and $S E(X)$? (Simplify your answer)

Solution: This is a Bernoulli trial with probability of success $p=0.1$. Then $E[X]=p=0.1$ and $S E(X)=\sqrt{\operatorname{Var}(X)}=\sqrt{p(1-p)}=\sqrt{0.1(0.9)}=0.3$.
(b) (4 points) What is the probability that in a section of 25 students, at most $4 \%\left(=\frac{1}{25}\right)$ of them go to office hours? (You do not need to simplify your answer)

Solution: This is repeating 25 Bernoulli trials so this is a binomial distribution. We have $n=25, p=0.1$ and the probability that at most 1 goes to office hours is

$$
f(0)+f(1)=\binom{25}{0}(0.1)^{0}(0.9)^{25}+\binom{25}{1}(0.1)^{1}(0.9)^{24}
$$

(c) (4 points) Use the CLT to approximate the probability that at most 4% of the section of 25 students go to office hours. (Hint: $z(1)=0.3413$)

Solution: Let \bar{X} be the average of the X_{i} for the students, which is the percentage of students who go to office hours in a section of $n=25$ students. Then $\bar{\mu}=\mu=0.1$ and $\bar{\sigma}=\sigma / \sqrt{n}=0.3 / \sqrt{25}=0.06$. We want to calculate $P(\bar{X} \leq 0.04)$. The CLT tells us that \bar{X} is approximately normally distributed so using z scores, this probability is approximately $1 / 2-z(|0.04-0.1| / 0.06)=$ $1 / 2-z(1)=0.1387$.

